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Abstract. We discuss the enumeration of Feynman diagrams at tree order for processes with external
lines of different types. We show how this can be done by iterating algebraic Schwinger–Dyson equations.
Asymptotic estimates for very many external lines are derived. Applications include QED, QCD and scalar
QED, and the asymptotic estimates are numerically confronted with the exact results.

1 Introduction

With the growing complexity of scattering amplitudes that
are becoming amenable to calculation, especially with the
availability of recursive algorithms like [1,2], the question
of the number of contributing Feynman graphs becomes
of interest in its own right. As will be seen, already for
tree diagrams their enumeration is a nontrivial question.
In [3] the number of graphs for theories with a single,
self-interacting scalar field was studied, and a method de-
rived to estimate the asymptotic number of tree graphs
for the 1 → n amplitude for large n was described, im-
proving on earlier estimates [4,5]. The precise number of
graphs, but not its asymptotic form, for the case of QCD
was discussed also in [6], albeit in a manner that does
not lead to straightforward numerical results. It is the
aim of the present paper to improve on this situation. In
Sect. 2, we briefly review the single-field case. In Sect. 3,
we discuss the case of “QED”, that is, processes involv-
ing fermions as well as bosons with QED-like interactions
between them, and also the case where the bosonic field
has a three-boson interaction: for these cases, almost-exact
asymptotic results are easily found. The more complicated
cases of QCD (with additional four-point boson vertices),
scalar QED and “all-out” theories with arbitrary bosonic
self-interactions, are discussed in Sect. 4.

2 Single-field theories

The enumeration of tree diagrams in a given theory is
simpler than that of general diagrams with loops, in the
sense that for tree diagrams symmetry factors do not oc-
cur: indeed, at present the counting of higher-order dia-
grams appears to be almost hopeless. Since diagrams can
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be counted by simply replacing all propagators and ver-
tices by unity, the counting problem becomes equivalent
to solving the Schwinger–Dyson (SD) equation for a sim-
ple zero-dimensional Euclidean theory. To set the stage,
let us consider such a theory, with a single self-interacting
scalar field ϕ and a Euclidean action

S(ϕ) =
1
2
ϕ2 − V (φ), V (ϕ) =

1
3!
ϕ3 +

1
4!
ϕ4 + · · · , (1)

where V (φ) collects all higher-point interactions according
to whether they are present in the theory or not. Note that
the minus sign and the factorials in front of the interaction
terms ensure that all vertices are precisely unity. Let us
denote by a(n) the number of tree diagrams entering in
the 1 → n amplitude, and by φ(z) its generating function:

φ(z) ≡
∑
n≥1

zn

n!
a(n). (2)

This generating function, then, obeys the algebraic Sch-
winger–Dyson equation

φ(z) = z + V ′(φ(z)), (3)

where double counting is avoided by the factorials in front
of the terms in the interaction potential: for instance, in
pure ϕ3 theory the Schwinger–Dyson equation, translated
back in terms of a(n), reads

a(n) = δn,1 +
1
2

∑
n1,2≥1

n!
n1!n2!

a(n1)a(n2)δn,n1+n2 . (4)

Obtaining the exact number of graphs for given n is simply
a matter of algebraically iterating (3) up to the appropri-
ate order in powers of z, which is a trivial task for any
halfway decent computer algebra system. For the asymp-
totic result, however, we have to employ more. The asymp-
totic form of a(n) is of course given by the singularity
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structure of φ(z) as a function of z. Now, φ(z) cannot
have poles for finite z if V (ϕ) is a finite polynomial, since
the SD equation cannot then be satisfied. The singulari-
ties must therefore be branch points. Let us write z as a
function of φ:

z = F (φ) ≡ φ − V ′(φ). (5)

We now look for that value of φ (and z) for which the
definition of φ(z) becomes ambiguous, i.e. where a branch
cut starts. Such points φ0 will be situated where dφ/dz
duverges, or

dF (φ)
dφ

= 0 at φ = φ0. (6)

To each of these roots corresponds a value z0 = F (φ0),
and that z0 which lies closest to the origin determines
the leading asymptotic behaviour. We can then make an
expansion around the appropriate value of φ0:

z = F (φ0) +
1
2
F ′′(φ0)(φ − φ0)2 + · · · , (7)

and we can read off the approximate form of φ(z) in the
neighbourhood of the singular point:

φ(z) ∼ φ0 −
(
1 − z

F (φ0)

)1/2
√

−2F (φ0)
F ′′(φ0)

. (8)

The expansion of the square-root form,
√
1 − x = 1 −

∑
n≥1

(2n − 2)!xn

n!(n − 1)!22n−1 ∼
∑

n

xn

n3/2
√
4π

, (9)

where we indicate its asymptotic form, then tells us that
the asymptotic form of a(n) is given by

a(n) ∼ n!
n3/2C

nD, C =
1

F (φ0)
, D =

√
−F (φ0)
2πF ′′(φ0)

.

(10)
Two points are in order here. If it should happen that
F ′′ vanishes together with F ′, we might have to look for
a cube-root branch point rather than a square-root one:
we have never yet encountered this case. Secondly, it is
possible, as for instance in pure ϕ4 theory, that there are
several z0 values equally far from zero. In that case we
have to add the asymptotic contributions from every such
point, and this is the mechanism by which in pure ϕ4

theory even values of n become forbidden.
Some results are collected in the following table, for

theories in which all interactions from ϕ3 up to and in-
cluding ϕM are present.

M C D

3 2.00000 .282095
4 2.50804 .191409
5 2.57845 .178231
6 2.58755 .175794
7 2.58859 .175393
8 2.58868 .175336
9 2.58869 .175331
∞ 2.58869 .175329

The last theory, with potential V (ϕ) = exp(ϕ)− ϕ− 1, is
interesting in that it establishes an upper bound on the
number of tree graphs in any single-field theory. Equiva-
lently, it gives the number of graphs arising from an effec-
tive action after tadpole renormalization.

3 QED-like theories

We now turn to the more complicated case where fermi-
onic fields are also present: we then have fermions, an-
tifermions, and bosons. The simplest case is that of QED
with a single fermion type. The action is then given by

S(ϕ, χ, χ̄) =
1
2
ϕ2 + χ̄χ − χ̄χϕ, (11)

where χ denotes the fermion and χ̄ the antifermion field.
We now have three amplitudes, depending on the incom-
ing line, and we have the following generating functions:

φ(z, x, x̄) =
∑

n0,1,2≥0

zn0xn1 x̄n2

n0!n1!n2!
a(ϕ → n0ϕ, n1χ, n2χ̄),

ψ(z, x, x̄) =
∑

n0,1,2≥0

zn0xn1 x̄n2

n0!n1!n2!
a(χ → n0ϕ, n1χ, n2χ̄),

ψ̄(z, x, x̄) =
∑

n0,1,2≥0

zn0xn1 x̄n2

n0!n1!n2!
a(χ̄ → n0ϕ, n1χ, n2χ̄),

(12)

and coupled SD equations:

φ = z + ψψ̄, ψ = x+ φψ, ψ̄ = x̄+ φψ̄. (13)

These can be readily expressed in φ alone:

ψ =
x

1 − φ
, ψ̄ =

x̄

1 − φ
, (14)

and
φ = z +

ξ

(1 − φ)2
, ξ = xx̄. (15)

The combination ξ implies, of course, conservation of
fermion number, and we see that it suffices to determine φ
as a function of z and ξ, except for processes without any
external bosons. Again, combined expansion in powers of
ξ and z is trivial by iterating (15). For the asymptotic be-
haviour we now have to study a two-variable problem. We
do this by momentarily keeping z fixed, and considering
the singularity of φ in terms of ξ:

ξ = Fz(φ) = (1 − φ)2(φ − z),
F ′

z(φ) = (1 − φ)(1 + 2z − 3φ). (16)

The singularity, parametrized by z, must be again of
branch-point type, and is situated at

φ0 =
1 + 2z

3
, Fz(φ0) =

4
27

(1 − z)3,

F ′′
z (φ0) = −2(1 − z), (17)
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so that the asymptotic behaviour for high powers of ξ is
given by

φz(ξ) ∼
∑

n

1
n3/2

√
27π

(27/4)n

(1 − z)3n−1 ξ
n. (18)

This immediately gives the behaviour with powers of z as
well. Expanding the form (1 − z)−3n+1,

φ(ξ, z) ∼
∑
n,k

ξnzk (27/4)
n

√
27π

(3n − 2 + k)!
k!(3n − 2)!n3/2 , (19)

gives for the number of graphs

a(ϕ → kϕ, nχχ̄) ∼ (27/4)n√
27π

(3n − 2 + k)!n!2

(3n − 2)!n3/2 . (20)

The goodness of this asymptotic result, when compared
with the exact enumeration, does not depend on k but
only on n: the exact result is 1.3644356 times the approxi-
mate one for n = 1, which ratio decreases to 1.0244771 for
n = 10 and to 1.0120180 for n = 20. This k-independence
is related to the fact that we have here the exact Taylor
expansion of the pole around z = 1: when we use Stir-
ling’s approximation for the factorials, a dependence on k
is introduced.

We may extend our discussion to the case of more
fermions. If we introduce f fermion flavours, each flavour
j will have its own generating functions ψj and ψ̄j , with
variables xj and x̄j : but φ will still be described by (15),
with the sole redefinition

ξ = xx̄ → ξ =
f∑

j=1

xj x̄j . (21)

The amplitude therefore becomes, upon multinomial ex-
pansion:

a(ϕ → kϕ, n1χ1χ̄1, n2χ2χ̄2, . . . , nfχf χ̄f )

∼ (27/4)n√
27π

(3n − 2 + k)!n!n1!n2! · · ·nf !
(3n − 2)!n3/2 . (22)

For theories in which the various fermion types have the
same type of vertices, this is the general way in which one
goes from the single-fermion to the multi-fermion case,
and therefore we shall only consider the single-fermion
case in the following.

The next simplest case is that where we allow a ϕ3 self-
interaction for the boson in addition to the ϕχχ̄ vertex.
The analog of (15) is then

φ = z +
1
2
φ2 +

ξ

(1 − φ)2
, (23)

so that

Fz(φ) = (1 − φ)2
(
φ − 1

2
φ2 − z

)
. (24)

The equation F ′
z(φ) now has two roots, leading however

to the same result: with φ = 1 − Φ and z = 1/2 − ζ, the

singularity condition reads Φ2 = ζ, and the form of φ close
to the singularity reads

φ ∼
∑

n

2n−2

n3/2
√
π

1
ζ2n−1/2 . (25)

In turn, this gives the asymptotic form

a(φ → kφ, nχχ̄) ∼ 23n+k−5/2

n3/2
√
π

(2n+ k − 3/2)!n!2

(2n − 3/2)!
. (26)

Again, the goodness of the approximation is independent
of k, and the ratio exact/approximate reads 1.253314137
for n = 1, 1.019251423 for n = 10, and 1.009498692 for
n = 20.

4 Asymptotics by saddle-point methods

It is tempting to extend the reasoning of the previous sec-
tion to more complicated cases. This is, however, danger-
ous because of the following reason. In finding the singu-
larity we have first to solve F ′

z(φ0) = 0 to find φ0 as a
function of z, and then to determine the coefficient of zk

in 1/Fz(φ0(z))m, where m is a large number. In principle,
this is then again determined by the precise nature of the
singularity of this form, that is, the behaviour of Fz(φ0(z))
close to a root. If z0 is this root, we can generally write

Fz(φ0(z)) = A(z0 − z)p (27)
× (

1 +B(z0 − z) + O (
(z0 − z)2

))
,

for some positive p. Naively making the expansion around
z = z0 gives then

1
Fz(φ0(z))m

∼ 1
Am(z0 − z)pm

− mB

Am(z0 − z)pm−1 + · · ·

=
∑

k

1
Amzpm

0

(
z

z0

)k

×
[
(pm+ k − 1)!
k!(pm − 1)!

− mBz0
(pm+ k − 2)!
k!(pm − 2)!

+ · · ·
]

=
∑

k

1
Amzpm

0

(
z

z0

)k (pm+ k − 1)!
k!(pm − 1)!

×
[
1 − Bz0

m(pm − 1)
(pm+ k − 1)

+ · · ·
]
. (28)

The correction term is not small for generic large m and k
values, but only becomes small in the “super-asymptotic”
limit k 
 m2 
 1, which is too asymptotic to interest us
here.

The most efficient way to determine the high-k be-
haviour appears to be the following. Let us rewrite the
relation between φ0 and z:

F ′
z(φ) = 0 ⇒ G(φ) = z. (29)
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For instance, in the “QED + ϕ3” case considered above,
we have G(φ) = 2φ−φ2 −1/2. The form of the coefficient
cn,k of ξnzkn−3/2 is then given by a (counter-clockwise)
Cauchy integral around z = 0:

cn,k ∼ 1
2iπ

∮
dz

1
zk+1

1
Fz(φ)n

√
−Fz(φ)
2πF ′′

z (φ)
, G(φ) = z.

(30)
We can readily transform this into a loop integral for φ:

cn,k ∼ 1
2iπ

∮
dφ

G′(φ)
G(φ)k+1H(φ)n

√
−H(φ)
2πH2(φ)

,

H(φ) = FG(φ)(φ), H2(φ) = F ′′
G(φ)(φ). (31)

Note that, in the definition of H2, the substitution z =
G(φ) must be made after the differentiation. The only
tricky point is to determine which of the various roots of
G(φ) = 0 should be chosen to integrate around. Note that
this question can be answered unambiguously: if worst
comes to worst, one can simply check the result against the
exact enumeration for largish values of n and k. Having
found the point around which to do the φ integral, we
then proceed to deform the integration contour into a pair
of integrals parallel to the imaginary axis. The upwards
integral (“main” integral) is chosen to run over the saddle
point φ̂, situated on the real axis and given by

K ′(φ̂) = 0, K(φ) ≡ −n logH(φ) − k logG(φ). (32)

In many cases φ̂ can actually be given as a function of n
and k in closed form. The downwards integral (“return”
integral) is chosen to run over another saddle point. In
the cases we have studied, we have always found that the
values of H(φ) and F (φ) in the saddle point of the re-
turn integral are larger (in absolute value) than those for
the saddle point of the main integral, so that the contri-
bution of the return integral is exponentially suppressed
with respect to the main integral. The result, therefore, is

cn,k =
1
2π

G′(φ̂)

G(φ̂)k+1H(φ̂)n

√
−H(φ̂)

H2(φ̂)K ′′(φ̂)
. (33)

The final asymptotic estimate for the number of tree
graphs with k + 1 external bosons and 2n fermions/
antifermions can therefore be written as follows:

a(ϕ → kϕ, nχχ̄) ∼ (n − 1)!2k!Cn
1 C

k+1
2 D,

C1 = 1/H(φ̂), C2 = 1/G(φ̂),

D =
n1/2G′(φ̂)

2π

√
−H(φ̂)

H2(φ̂)K ′′(φ̂)
. (34)

The numbers C1, C2 and D only depend on the ratio k/n.
As a first check, we redo the QED case with one fer-

mion flavour. Here, G(φ) = (3φ − 1)/2 so that we must
integrate around φ = 1/3. There is only a single saddle
point φ̂ = (n + k)/(3n + k). Since φ̂ > 1/3 and main

integral is indeed upwards, and the return integral can be
moved out to infinity. The result for cn,k is nothing but
the Stirling approximation of the “exact” result.

The next case is that of “QED+ϕ3”. The equation
G(φ) = 0 has two roots, 1±(1/2)1/2, of which 1−(1/2)1/2

is on the appropriate Riemann sheet. This can be seen
from the fact that the saddle point φ̂ = (2n+ k − (2n2 +
nk)1/2)/(2n + k) is to the right of this root and has a
positive value for G′(φ̂): choosing the other possible saddle
point (with a + sign before the square root) leads to a
negative G′(φ̂) and consequently a negative asymptotic
estimate. Again, the saddle-point result boils down to the
Stirling approximation of the “exact” one.

A more complicated case is that of QED with a pure
ϕ4 interaction added. We find

G(φ) = − 5
12

φ3 +
1
4
φ2 +

3
2
φ − 1

2
,

G′(φ) = −1
4
(5φ2 − 2φ − 6),

H(φ) =
1
4
(1 − φ)3(2 − φ2),

H2(φ) =
1
2
(1 − φ)(5φ2 − 2φ − 6). (35)

Note that the roots of H2 are also roots of H or G′: this
is a general occurrence. The main-integral saddle point φ̂
is a root of the equation

(5n+3k)φ3−3(n+k)φ2−6(3n+k)φ+6(n+k) = 0. (36)

By standard methods, we can find the three roots of this
equation:

φ̂r =
1

5n+ 3k

[
2(31n2 + 30nk + 7k2)1/2

× sin
{
2rπ
3

− 1
3
u

}
+ n+ k

]
,

u = arcsin
(
29n3 + 75n2k + 63nk2 + 17k3

(31n2 + 30nk + 7k2)3/2

)
, (37)

with r = 0, 1, 2. The choice r = 0 interpolates smoothly
between .325259493 for k/n = 0 and 1 for n/k = 0, and
this turns out to be the correct saddle point. The singu-
larity structure of the integrand is as follows: there are
poles of order k+1 at the three roots of G, −1.788306912,
.3252594930, and 2.063047419. There is a pole of order
3n−1 at 1, and poles of order n at ±(21/2). With the stan-
dard convention that the square-root branch cut lies along
negative real values, there are cuts along the real φ axis
from −(21/2) to (1− (31)1/2)/5 ∼ −.9135528726 and from
(1+(31)1/2)/5 ∼ 1.313552873 to 21/2. The return integral
can be taken to cross the real axis at −.9135528726, where
H = 2.041476117 and G = −1.344004635. The saddle-
point values for the main integral are always smaller than
these in absolute value, confirming the above statement
that the return integral may safely be neglected.

The more relevant case of QCD is treated in the same
manner. We have

G(φ) = − 5
12

φ3 − 3
4
φ2 + 2φ − 1

2
,
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G′(φ) =
1
4
(4 − 5φ)(2 + φ),

H(φ) =
1
4
(1 − φ)3(2 − 2φ − φ2),

H2(φ) = −1
2
(1 − φ)(4 − 5φ)(2 + φ), (38)

and φ̂ solves

(5n+3k)φ3+3(3n+k)φ2−12(2n+k)φ+6(n+k) = 0; (39)

this root can be written as

φ̂ =
1

5n+ 3k
(40)

×
[
2(13k2 + 49n2 + 50nk)1/2 sin

(
1
3
u

)
− 3n − k

]
,

u = arcsin
(
2
141n3 + 225n2k + 123nk2 + 23k3

(13k2 + 49n2 + 50nk)3/2

)
.

The singularity structure resembles that of the previous
case: poles of order k+1 at the three values −3.343142188,
.2853836802, and 1.257758508; a pole of order 3n−1 at 1,
and poles of order n at −1−(31/2) ∼ −2.732050808 and at
−1+(31/2) ∼ .7320508076; and branch cuts running from
−1− (31/2) to −2 and from −1+ (31/2) to 4/5. The loop-
integration contour is situated around .2853836802 and φ̂
moves smoothly from this value upwards to .7320508076
as k/n increases from 0 to infinity. The saddle point for
the return integral is at φ = −2, where H = 27/2 and
G = −25/6, again always considerably bigger than H(φ̂)
and G(φ̂). This allows for the complete determination of
C1,2 and D: the value of φ̂ is given by (40), and

K ′′(φ) = n
5φ4 + 12φ3 + 2φ2 − 36φ+ 20

(2 − 2φ − φ2)2(1 − φ)2

+ 3k
25φ4 + 60φ3 + 54φ2 − 204φ+ 156

(5φ3 + 9φ2 − 24φ+ 6)2
. (41)

In the following table we present the non-universal quan-
tities C1, C2 and D for various ratios k/n.

log10(k/n) C1 C2 D

−3.0 8.143 4155. .0002929
−2.5 8.157 1316. .0005196
−2.0 8.217 417.5 .0009172
−1.5 8.389 133.6 .001594
−1.0 8.961 43.78 .002640
−0.5 10.89 15.40 .003802
0 18.00 6.452 .003882
0.5 48.97 3.666 .0002183
1.0 197.2 2.833 .0006782
1.5 836.8 2.599 .0001506
2.0 3141. 2.535 .00002913
2.5 10660. 2.516 .000005336
3.0 34530. 2.511 .0000009583

As expected, the accuracy of the asymptotic approxima-
tion improves uniformly if n and k grow with a fixed ra-
tio. In the table we collect some results, where we have of
course only those values for which both n and k are inte-
gers, and have iterated the exact generating function up
to n + k = 29. The accuracy is actually quite reasonable
even for moderate values of n and k.

n k = n/3 k = n/2 k = 2n/3 k = n k = 3n/2 k = 2n k = 3n

1 1.019 1.003
2 .9904 1.010 1.010 1.007 .9995
3 .9709 .9999 1.006 1.004 .9993
4 .9927 1.004 1.004 1.003 .9994
5 1.003 1.002 .9995
6 .9837 .9946 .9992 1.002 1.003 1.002 .9995
7 1.002 1.001 .9996
8 .9958 1.002 1.002 1.001
9 .9888 .9993 1.001 1.001
10 .9966 1.001 1.001
11 1.001
12 .9915 .9971 .9994 1.001
13 1.001
14 .9975 1.001
15 .9932 .9995
16 .9978
17
18 .9943 .9980
19
20
21 .9951

We may also consider a theory where ϕp bosonic self-
interactions occur for every p. We simply list the results:

G(φ) = 3φ − 1
2
φ exp(φ) − 1

2
exp(φ), (42)

G′(φ) = 3 − exp(φ) − 1
2
φ exp(φ),

H(φ) =
1
2
(−1 + φ)3 (−2 + exp(φ)) ,

H2(φ) = −(−1 + φ) (−6 + 2 exp(φ) + φ exp(φ)) ,

0 = exp(φ̂)((n+ k)φ̂+ n − k) − (6n+ 2k)φ̂+ 2k,

K ′′(φ) = n
{(

12 − 10 exp(φ) + 3 exp(2φ) − 4φ exp(φ)

+2φ2 exp(φ)
)/(

(−2 + exp(φ))2(−1 + φ)2
)}

+k
{(

(6φ exp(φ) + exp(2φ) + 6φ2 exp(φ) + 36

−24 exp(φ))
)/(

(−6φ+ φ exp(φ) + exp(φ))2
)}

The Riemann sheet structure of the function G is of course
much more complicated in this case, but fortunately the
relevant saddle point is the simplest solution on the real
axis, again interpolating smoothly between the appropri-
ate zeroes of H and G. In the table, we give the non-
universal quantities as a function of k/n.
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log10(k/n) C1 C2 D

−3.0 8.150 2000. .0002904
−2.5 8.170 1250. .0005151
−2.0 8.224 384.6 .0009093
−1.5 8.396 135.1 .001580
−1.0 8.977 44.05 .002614
−0.5 10.91 15.53 .003753
0 17.99 6.494 .003797
0.5 48.08 3.731 .002092
1.0 184.5 2.907 .0006325
1.5 729.9 2.681 .0001372
2.0 2564. 2.618 .00002613
2.5 8333. 2.591 .000004754
3.0 20000 2.584 .0000008515

These numbers are qualitatively quite similar to that for
QCD. The accuracy of the approximation appears to be
almost identical to that of the QCD case.

Another interesting case is that of scalar QED, where
we have an additional ϕ2χχ̄ interaction term. The SD
equations now become more complicated:

ψ = x+ ψ(φ+ φ2/2), ψ̄ = x̄+ ψ̄(φ+ φ2/2),
φ = z + (1 + φ)ψψ̄, (43)

so that

φ = z +
ξ(1 + φ)

(1 − φ − φ2/2)2
. (44)

Following the same steps as before, we find

G(φ) =
−2 + 9φ2 + 4φ3 + 6φ

3(2 + 2φ+ φ2)
,

G′(φ) =
4(φ2 + 2φ+ 4)(1 + φ)2

3(2 + 2φ+ φ2)2
,

H(φ) =
(2 − 2φ − φ2)3

12(2 + 2φ+ φ2)
,

H2(φ) =
(φ2 + 2φ+ 4)(−2 + 2φ+ φ2)

2 + 2φ+ φ2 ; (45)

the main-integral saddle point is a solution of

(4n+ k)φ3 + 3(3n+ k)φ2 + 6nφ − 2(n+ k) = 0, (46)

and reads

φ̂ =
1

4n+ k

×
[
2(k2 + 4nk + n2)1/2 sin

(
π + u

3

)
− 3n − k

]
,

u = arcsin
(
n(3k2 + 18nk + 25n2)
(k2 + 4nk + n2)3/2

)
. (47)

Finally, we also need

K ′′(φ) =
{(

4n(84φ2 + 26φ4 + 6φ5 + φ6 + 24 + 56φ

+64φ3)
)/(

(−2 + 2φ+ φ2)2(2 + 2φ+ φ2)2
)}

+
{(

8k(36 + 320φ2 + 371φ4 + 205φ5 + 72φ6

+16φ7 + 2φ8 + 148φ+ 432φ3)
)

(48)/(
(2 + 2φ+ φ2)2(−2 + 9φ2 + 4φ3 + 6φ)2

)}
.

The results for the non-universal constants are given in
the following table.

log10(k/n) C1 C2 D

−3.0 9.671 4189. .1731E − 5
−2.5 9.690 1326. .5466E − 5
−2.0 9.756 420.2 .1721E − 4
−1.5 9.970 133.7 .5371E − 4
−1.0 10.66 43.18 .1627E − 3
−0.5 13.06 14.55 .4459E − 3
0 23.03 5.510 .8568E − 3
0.5 85.11 2.667 .6268E − 3
1.0 805.8 1.776 .1574E − 3
1.5 .1526E5 1.496 .2247E − 4
2.0 .4021E6 1.407 .2542E − 5
2.5 .1197E8 1.379 .2647E − 6
3.0 .3712E9 1.370 .2681E − 7

The non-universal constants appear to vary much more
rapidly as a function of k/n than in the case of QCD. The
accuracy of the asymptotic estimate, however, is essen-
tially the same.

5 Conclusions

We have demonstrated how the number of tree-level di-
agrams for several theories can be computed exactly for
given numbers of external legs of various kinds. We have
also described how asymptotic formulae for these num-
bers, valid in the limit of many legs of each kind, can be
obtained. We have compared these results for several the-
ories of interest, including QED, QCD and scalar QED.
Comparison with the exact results up to fairly high order
shows that the asymptotic estimates are accurate.
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